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A CHARACTERIZATION OF POSITIVE REPRODUCING KERNELS.

APPLICATIONS TO GREEN'S FUNCTIONS. 1.

by

N. A.ronszajn and K. T. Smith

1. Introduction.

The object of this paper is to prove a theorem which charac-

terizes the proper functional Hilbert spaces whose reproducing ker-

nels are positive. Since certain Green's functions are among the

most important examples of reproducing kernels, it is natural that

the general theorem leads to results about the positiveness of Green's

functions.

Not all Green's functions are reproducing kernels: those

and only those are, which correspond to positive definite differen-

tial problems of sufficiently high order. This restriction on the

order is avoided by use of the notion of pseudo-reproducing kernels

for general functional Hilbert spaces. If the Green's function for a

real elliptic self-adjoint linear differential problem exists, then it

is a pseudo-reproducing kernel if and only if the problem is positive

definite. Details of the underlying theory of pseudo-reproducing

kernels are not given, except for those basic definitions and proper-

ties which are necessary to make clear the application of the abstract

theorem about positiveness.

In the case of second order problems the question of which

Green's functions are positive is answered completely by a proof of

the equivalence of the following statements: (i) the problem is posi-

tive definite; (ii) the Green's function exists and is a pseudo-repro-

ducing kernel; (iii).the Green's function exists and is positive. In

1. Paper written under contract with Office of Naval Research N58304.



the case of higher order problems well-known examples show that

these statements are not equivalent: (iii) does not follow from (i)

and (ii) even for the square of the Laplacian and the boundary con-
8u 1.

ditions u = a- = 0. However, we give examples of fourth

order problems where it can be proved by the abstract theorem that

the Green's function is positive, and where a simple direct proof

does not seem to lie near at hand. The results are not restricted

to problems about domains in Euclidean space. They are stated

and proved for problems about relatively compact domains in ori-

ented differentiable manifolds.

Our results on second order problems include as quite

special cases some of the results of Bergman and Schiffer

and can be proved, in a heuristic manner at least, by following the

lines set forth by Bergman and Schiffer in the special cases. The

difficulty in this approach lies in the lack of general information

about the sets of points on which solutions to the differential equa-

tion are zero. Our method does not require information of this

kind.

2. Reproducing kernels.

The main theorem of the paper, Theorem 1 below, gives

necessary and sufficient conditions in order that the reproducing

1. R. J. Duffin [7], P. R. Garabedian

2. These authors consider only the differential operator -A +p,

p > 0, and consider boundary conditions slightly more special than

ours; they consider explicitly only the case of 2 variables. How-

ever, they treat two questions related to the question treated here:

when a Green's function is positive, and when one Green's function

is larger than another. The second question is not discussed in

this paper, but will be discussed from a similar general point of

view in another paper.
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kernel K(x,y) of a proper functional Hilbert space be non-negative.

It is proved in [z] that condition (a) in the theorem below is neces-

sary and sufficient in order that K(x,y) be real.

Theorem 1. In order that the reproducing kernel K(x,y) of

the proper functional Hilbert space "-j be non-negative it is neces-

sary and sufficient that I have the two properties

(a) If u E, then and 11ul -ul.

(b) For each real-valued uE Z( there exists ZiEq such

that "u(x) _ Iu(x)I for all x and 1l 1 <__ 11uh.

Proof. Assuming that , has the properties (a) and (b),

let u F, let u be such that (b) holds, and set u+= .(u + u) and

u"= 1(u- u). Clearly u+ and u are both non-negative, and

+ +-= u++ u and u = u -u . By using (a) it is proved easily that

the scalar product of real-valued functions is real. Therefore,

from 11'41 < hjul it follows that (u- u + ) < 0, and hence that

(u, u) = (u, u+ ) - (u, u) < - 112u'H. By virtue of the result from

[2] quoted above, K (x) = K(x,y) is real-valued for every y so

that this inequality can be applied to u = K to give 0 < K(y) =
y = y

(Ky,K) < - JK112 . This is possible only if K- = 0 so that

1. A. proper functional Hilbert space is a Hilbert space whose ele-

ments are functions on a basic set F , such that the value of a func-

tion at any point in 5 is a continuous linear functional. To each

proper functional Hilbert space 'Y3 there corresponds a function

K(x,y), called the reproducing kernel of /, defined on 6 x

and having the properties:

(a) for each yC- n , the function Ky (x) = K(x,y) belonfs

to F- .

(b) the reproducing property: for each uE , u(y) = (uKy).

-3-



K =K + >0.

y Y=

Assuming that K(xy) 2! 0, for each real-valued u4EY

let u and u '" be the projections of u and of -u on the closed

convex cone with vertex 0 generated by the set [K.1 . Then for

every p ? 0 and every v in the cone, IIu-u' lIZ <__ Ilu-u,- Pvliz,

from which it follows that for every v in the cone (u'-uv) > 0.

Applying this to v = K , we obtain u'(y) > u(y) for every y.
y

Similarly, u"(y) >-u(y) for every y. Since K(xy) is non-nega-

tive, both u' and u" are non-negative, so that if U = u' + u", then

(x) > Ju(x)I for all x. All that remains is to show that 1.1, < Iu II.

This was done in another p'aper [5], but since the proof is very

short it bears repetition.

If 7', a, and C,1 are the angles between u and ul, u1 ,

and u", and u" and -u, respectively, then, as u - u' is ortho-

gonal to u' and -u-u" is orthogonal to u", the inequality to be

proved takes the form Ilu 1(cos q I+cos "+ 2cos 9"cos ( "cos a) <

llu IZ, which is easy to establish with the aid of the inequalities

O< q' < "', 0< 9" 7 and A < 47 q+ a +go< ,= o _ = n _

Remark 1. If condition (a) holds for a set of functions

which is dense in I , then condition (a) holds for all functions in

1. If condition (b) holds for a set of functions which is dense in

the set of all real-valued functions in 'Y , then condition (b) holds

for all real-valued functions in

Remark 2. The following statement about matrices is a

consequence of Theorem 1. Let {aij be a real positive definite
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matrix. In order that every element in {aij be non-negative

it is necessary and sufficient that for each real vector u there
exist ^ such that _U for all i and Z'a... .. <

li J uil -j 1313

_ a.. u. u,.

3. Pseudo-reproducing kernels.

The functional spaces which are of use in differential prob-

lems are proper functional Hilbert spaces in problems of order

larger than the dimension of the underlying Euclidean space. In

problems of smaller order the spaces are more general functional

Hilbert spaces in which the functions are not defined everywhere.

A functional space is a normed linear class I of functions

on a basic set , , each defined except on some exceptional set be-

longing to a hereditary 6-ring aZ (the exceptional class of sets).

It is assumed that the norm in I has the property that if

Iun- ull --* 0. then, for some subsequence Un un(x)--u(x)

except on a set in OP . A complete discussion of functional spaces

and functional completion can be found in [5].

Let u be a 6-finite complete measure on a set 4t'. The

class of measurable subsets of -. of finite measure will be de-

noted by . , the sets in A by c, j, etc. A. v-measurable func-

tional Hilbert space is a functional Hilbert space I on the basic

set 4E. such that: (a) all the exceptional sets are of measure 0,

(b) each uel is integrable on every : ., (c) if Hull + 0,

then f udi 0 for some x e and (d) for every ,

f udLJ. is a continuous linear functional of u.

1. The definition is valid for general incomplete spaces. In case

-5-



A. si-measurable functional Hilbert space determines a

proper functional Hilbert space P whose basic set is the class .

consists of all functions u to which there corresponds some

u 4E' such that f) = .ud4 for every xE. The mapping

u - u is one to one, and when ( i,',) is defined to be (u,v), it

becomes a Hilbert space isomorphism between I and . The

reproducing kernel for 1 is the function k(;c,y) = (u.,u.), where

.F1 is such that for every v ' , f;vd = (uu.).

A pseudo-reproducing kernel for a p-measurable functional

Hilbert space I is a function K(xy) with the property that:

for every x and y in , K(x,y) is integrable over x j

and k(x) =- K(x,y)dL(y)dp.(x). It is clear that ti-is condi-

tion determines K(x,y) a. e. on 6 X .

Since K(i,) is an additive function of the rectangle

x y, it can be extended to an additive set function on the ring

generated by the rectangles, so that by the Radon-Nikodym theorem,

a necessary and sufficient condition in order that the pL-measurable

functional Hilbert space I have a pseudo-reproducing kernel is

that the function K(;,) be an absolutely continuous function of

of a complete space, in particular in case of a Hilbert space, (d)

follows from (a), (b), (c).

1. The beginnings of the theory of measurable spaces and pseudo-

reproducing kernels are in the notes [1]. These notions can be

defined in an absolute way, independent of a measure given before-

hand. The relative notions defined here are sufficient for our

needs in the present paper and avoid some of the difficulties

inherent in the absolute notions.
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the rectangle x y.

If a measure p. and a function K(x,y) integrable over all

4x X are given, then a necessary and sufficient condition in or-

der that K(x,y) be a pseudo-reproducing kernel for some p-meas-

urable functional Hilbert space I is that the function K(x,4) =

f; fK(xy)dtL~y)dp.(x) be a positive matrix on L. if k(;C, ) isy
a positive matrix, .7 is constructed as follows. Let "1o be the

class of all linear combinations u = Gaiu. " , where u.(x) =
SYi YiJ K(x,y)d1 (y), with the norm

yi

(3.1) HullZ =E.aZ i K( .,).

It can be proved that 5o has a functional completion I, which

E 1.
is a p-measurable functional Hilbert space. Obviously, K(x,y)

is a pseudo-reproducing kernel for 71.

The proper generalization of Theorem 1 to 1 -measurable

functional Hilbert spaces and pseudo-reproducing kernels is clear.

If we put f = La i  Yi' where is the characteristic

function of i', then (3.1) reads

(3. 2) If u = Kf = JK(xy)f(y)dI(y), then juIZ=JKf(x)f(dIL(x

Thus K(x,y) is a pseudo-reproducing kernel if and only if it is

the kernel of an integral operator which is positive in the most

general sense, i.e. on the class of linear combinations of charac-

1. The proof is not obvious. It will be given in the development

of the general theory of measurable spaces and pseudo-reprodu-

cing kernels.
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I

teristic functions of measurable sets of finite measure. The

corresponding p-measurable functional Hilbert space is the com-

pletion of the range of the integral operator in the norm (3.Z).

Theorem 1 has the following corollary about positive integral

operators.

Corollary 1. If K is a positive integral operator defined

on the class of linear combinations of characteristic functions of

sets of finite measure, then the kernel of K is non-negative al-

most everywhere if and only if it is real and for each real u in

the range of K there exists U in the completion of the range such

that i(x) > lu(x)l almost everywhere and I1111 Ilull. The

norm in question is that defined in (3.Z).

4. Green's functions.

The integral operators in which we are chiefly interested

are the Green's functions for differential systems. Let A. be a

linear elliptic self-adjoint differential operator defined in a boun-

ded domain D, and let B be a normal system of boundary opera-

2.
tors such that the system (A; IBi ) is self-adjoint. The dif-

ferential system (A; JBi) defines a symmetric operator, which

2 1
also will be called A, on the Hilbert space L of functions which

are square integrable over D. The domain of the operator A is

the set of all sufficiently regular functions u on U which satisfy

1. We treat the complex case. In the real case it must be assumed

that K(x,y) = K(y,x).

2. We use the terminology introduced in N. Aronszajn and A. N.

Milgram [4J
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the boundary conditions B u = 0. If the closure of the operator A

has a bounded inverse defined everywhere on L, and if the in-

verse is an integral operator, then the kernel G(x,y) of this in-

tegral operator is called the Green's function of the system

(A; jBil). It is clear that if u = Gf, then $Gf(x)?-x) dx =SD

u(x)Aux) dx, so that the quadratic form in (3.2) is non-nega-

tive if and only if
(4.1) .l (x) u-- dx

is non-negative for all u in the domain of A. Since it is assumed

that the closure of A. has a bounded inverse, if (4.1) is non-negative,

there exists a constant c > 0 such that

[lu 11 > cJ Jul dx for u in the domain of A;

that is, the differential system (A.; jiij) is positive definite.

In classical usage the term Green's function is restricted

to kernels G(x,y) which are sufficiently regular: if the order of

the operator A is Zm, if its coefficients are sufficiently differen-

tiable, and if the boundary 3D is sufficiently smooth, then, for

fixed y E D, G(x,y), as a function of x, should be at least of class

C2m in Recent advances in the theory of elliptic partial

differential equations have made it possible to prove, in a wide

variety of cases, not only the existence of the Green's function as

we have defined it, but also the regularity required in the classi-

cal definition. The proof, especially the proof of regularity, is

1. In order to reduce the number of notations we write A instead

of the closure of A in some of the formulas.

-9-



based on the property of coerciveness, which has to do with the

relation between the quadratic form in (4.1) and the standard

m-norm, defined as follows

k=O kj*...+k <m (kl"" kn) I " I" ni

The quadratic form in (4.1') is said to be coercive on the domain

of A if there exist constants c > 0 and N > 0 such that

(4.3) hull +c1u1 1m l >NJJuJl m for all u in the domain of A..

If the quadratic form (4.1) is coercive on the domain of A,

the following statement can be proved.

If the coefficients of A are of class C , then the existence

of the Green's function G(x,y) in the sense given above is equiva-

lent to the fact that 0 is not an eigenvalue of the closure of A.

Furthermore, if G(x, y) exists, the integral operator with kernel

G(x,y) is completely continuous in the space L2 . 2.

1. The first coerciveness inequality was proved by Girding [91 for

the case of Dirichlet boundary conditions. The general notion of

coerciveness was introduced and investigated by N. Aronszajn [3].

A more complete presentation of the subject will be given by the

same author in a forthcoming paper.

2. If we assume the coefficients of A to be of sufficiently high
NClass C , it can be proved that G(x,y) exists in the classical

sense. A proof of this fact will be published elsewhere. For

special types of boundary conditions, including the Dirichlet boun-

dary conditions, a proof of the regularity was given by Nirenberg

[101. A sketchy proof of the statement in the text was given in [11].
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If the Green's function of the system (A;{Bil) exists

and if the system is positive definite, then we see from the last

section that the Green's function is a pseudo-reproducing kernel.

The corresponding functional Hilbert space is the completion of

the domain of A. in the norm (4.1). If the norm (4.1) is coercive, it

can be proved that the domain of A has a perfect functional com-

pletion, the functions of which a. e. derivatives in the ordinary

sense of orders < m in D and of orders < m-1 on the boun-

dary of D. This completion contains all functions of class 0 (mr1,l)

(i. e. functions of class Cm - 1 with Lipschitz (m-1) st derivatives)

which satisfy the stable boundary conditions, that is those of order

5 m-1. Therefore, Theorem 1 or Corollary 1 give a necessary

and sufficient condition in order that the Green's function be non-

negative.

It is clear that the foregoing considerations are valid for

differential systems considered in a relatively compact subdomain

of a differentiable manifold.

,5. Green's functions for differential problems of order 2.

We consider a real elliptic linear differential operator A

n 3of order Z on an oriented differentiable manifold M of class C

Such an operator (or its negative) is expressible in each coordi-

nate patch in the form

Au = -xa B u + terms of lower order

where a1 j is a real symmetric contravariant tensor of rank 2

-11-



which forms a positive definite matrix at every point. It is as-

sumed that the tensor aij is of class C2 , that the coefficients of

the first derivatives of u (which do not form a tensor) are of class

C I, and that the coefficient of u is continuous. It is assumed fur-

ther that the operator A is self -adjoint with respect to some posi-

1 n
tive density p(x)dx... dx of class C2 . 1.

If aij denotes the matrix inverse to tai and if a de-
2

notes the determinant of 1aij }, then gij = ( -L)K a.. is a Rieman-

nian metric on M n . Henceforth M n is considered as a Riemannian

manifold with this metric. . If g denotes the determinant of gij

then 4- = *g so A is expressible in any coordinate patch in the

form
1g a +J 8

Au = - ~ a u

where a is a continuous real valued function.

n n-i
Let D be a relatively compact domain in M n , and let M

be a portion of the boundary, OD, which is a submanifold of M n of

class C2. It can be proved that the most general normal system

n-l
of boundary operators at M which is self-adjoint relative to A.

is a system composed of a single operator, either the operator

1. This means that 9(x) dxl .. .dx n is an exterior differential form

of rank n, that in each coordinate patch f(x) is positive and of class
2

C , and that for every pair of functions u and v of class C and 0

outside a corract set, fA.u v(x)dx\.. dx = v "f(x)dxl...dxn .

2. We have assumed that the coefficients of A are somewhat more

regular than is strictly necessary, in order to be able to use this

metric, thereby simplifying a number of the formulas considerably.
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A A Bu
B 0 u u or the operator B1 u = + bu, where b is an arbitrary

n-continuous real valued function on M , and where is the

interior normal derivative in the metric gij" 1.

It is assumed that the boundary 8D is a submanifold of Mn

of class C ( 0"', and that 8D is also the boundary of Mn . It

is assumed in addition that OD is piecewise of class C in the

following sense : there exist a finite number of disjoint submani-

folds M of Mn such that 8D =U - for each i, M is
1

contained in a submanifold M.- of Mn of class C ; and in the
1

J n-1 -qi n-lusual measure on M.-, M _ M. has measure 0.1 ' 1 1

A

Let B be a boundary operator at OD obtained by choosing

for each M. either the operator B 0 or one of the operators B,

(with b continuous on M. and consider the bilinear form

(5.1) Q(uv) a % , -(g dx + (auV 4 dx - (s)kuV s
II) ex 3x a DJO D

where k is the function on 3D which on M.n -l is equal to 0 if the
1

n- l is A
boundary operator chosen on M i B and is equal to -b if

n-listhe boundary operator chosen on M. is B and where f(s) is

the value of the characteristic polynomial of A for the unit normal

2
to 3D at the point s. If u and v are functions of class C in a

1. The terminology used here is that introduced in N. Aronszajn

and A. N. Milgram [4]; and all of the calculations used in finding

the form of self-adjoint systems are based on the general theory

of differential operators on Riemannian manifolds developed there.

The operator B 1 had a particularly simple form because of the

special choice of the Riemannian metric on Mn.

-13-



A A1

neighborhood of ]5 and if Bu = By = 0, then

(5.z) Q(u,v) = fDAu 7 (g dx.

The quadratic form Q(u,u) is easily proved to be coercive,

even on the class of all functions, a fortiori on the domain of A.

Therefore, if the differential system (A.;B) is positive definite,

then the Green's function exists and is a pseudo-reproducing ker-

nel for the completion of the domain of A with the norm "i(uu) .

In view of the statements in the last section about this functional

space, the scalar product in the complete space is still given by

(5.1). Furthermore, the class of Lipschitz functions satisfying

A A

the stable boundary conditions (i. e. B 0u = 0 whenever B = B 0 )

forms a dense subspace of the completion. For a function u of

this class, lul is clearly also of this class, and can be taken as

the function _ in condition (b) of Theorem 1, since Q( Iu 1, lu1)=

Q(uu). This leads to

Theorem Z. The three statements below are equivalent.
A

(i) The system (A;B) is positive definite.

(ii) The Green's function for the system (A;B) exists

and is a pseudo-reproducing kernel.
A

(iii) The Green's function for the system (A.;B) exists

and is non-negative.

Proof. The equivalence of statements (i) and (ii) and the

fact that they imply statement (iii) are already proved. We assume

therefore, that the system (A;B) is not positive definite, but that

the Green's function G(x,y) exists, and we show that G(x,y) cannot

-14-



be non-negative.

According to the part of the theorem which is proved, the

Green's.function G y(x,y) for the system (A. +. ; B) exists and is

non-negative, provided the number 9> 0 is sufficiently large.

Gp defines a completely continuous integral operator on L . Let
1
- be its largest eigenvalue. By a well-known theorem of Jentsch,

is positive and simple and the corresponding eigenfunction f is

non-negative. It is easily verified that - < 0 and that

f = (p. - p)Gf. Obviously, therefore, G cannot be non-negative.

6. Green's functions for differential problems of order 4.

The examples of Duffin and Garabedian mentioned in the

introduction show that there is no condition resembling the condi-

tions (i) and (ii) of Theorem 2 which always will ensure that the

Green's function of a problem of order 4 is positive. In this sec-

tion we do not attempt to treat the general question; we only pre-

sent some interesting special cases.

We assume that Mn is an oriented differentiable manifold

of sufficiently high class, that D is a domain in Mn with a suffi-

ciently regular boundary, and that A. is a second order differential

operator of the type considered in the last section with sufficiently

regular coefficients. Mn is given a Riemannian metric as before.

A
We consider differential systems of the form (A ;B 0 , B 2 ) and

(AZ; B 3)' where

A

B u = u

-15-



BIU 5 -/ + ba

A -c au 1
B u= -- + - Au

A d 1 B
B U = ---- - B Aup- s) qe(s) Au

in which b, c, and d are sufficiently regular functions on 8D. Let-

ting A.0 be the operator on L corresponding to the first system,

and A.1 be the operator corresponding to the second, we define

Q (u,U) SI Au12 -C dx - iBD 1 ds,0 D fD 6

Ql(uU) = SDIAU 12- dx - JaDdjuIZ ds

If u belongs to the domain of A.0 , then D AZu U dx = Q0 (u,u)

and if u belongs to the domain of A, then JrAZu T dx = Ql(u,u)

Furthermore, it is not difficult to prove that Q 0 (u,u) is coercive

on the domain of A.0 and Q1 (u,u) is coercive on the domain of A.1.

We get the following

Theorem 3. If both systems (A.; B 0 ) and (A; B 0 B)

are positive definite and if c > 0, then the Green's function for

A 

A;

(A;o0 B 2 ) exists and is non-negative. If both systems (A.; Bl)

and (A.;B , 3 are positive definite and if d > 0, then the

Green's function for (A2 ; il' 13 ) exists and is non-negative.

Proof. Only the first statement will be proved; the second

is proved similarly.

The domain of A 0 with the norm Q 0o(UU) has a functional

completion whose elements are the functions of the form

-16-



41

u(x) = G0 f(x), where GO is the Green's function for the system

(A;B 0 ) and where f is square integrable. Clearly

0(,dx - ds0 D 18D
8G

Since G o > 0, -F- > 0. Hence the function u(x) = G O If(x)

has the properties (x) _> Iu(x)I and 8 (x) _ Iu(x)I. Since also

c > 0 it follows that Q 0 (U, ) < Q 0 (u,u).

Remark. If (A; B 0 ) is positive definite, then, for suffi-

ciently small c, (A ;B 0 , BZ) is also positive definite. If c = 0,

the statement of the'last theorem is trivial, since the Green's

function for the system (A2;O' )1 A) is r Go(x,z)Go(z,y) "g dz.

A. similar remark holds for the system (ArB3 and the func-

tion d.
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